IAEA Training in level 1 PSA and PSA applications

QA Programme for PSA

- Why a QAP for PSA ?
- MANAGEMENT
- PERFORMANCE
- ASSESSMENT

- "PSA is a tool of increasing importance that may influence design and operation of NPP"
- QAP is an essential tool of good management and is fundamental to achieving a quality PSA

Understanding plant design & operation

- Clear objectives & purpose of PSA
- Planned scope and depth
- Methodology & data to use
- Organisation & expertise of team & leaders
- Document configuration management
- Thorough interface control
- Comprehensive technical review

MANAGEMENT

Q.A.Programme documentation structure

MANAGEMENT Q.A.Programme documentation (1)

• QA Programme description

- Overall statement
- Objectives & Requirements
- Organisation & Resources
- QA Programmes integration
- Communication & Interfaces
- Required training & expertise
- QAP assessment

Review

MANAGEMENT Q.A.Programme documentation (2)

Management Documents
Planning & Scheduling
Working Documents
H.R. analysis
System analysis

•

Originating organisation
 QAP establishment
 PSA project plan
 Technical review involvement
 Report approval

- Internal interfaces
- External interfaces

MANAGEMENT STAFFING, TRAINING, QUALIFICATION

- Plant knowledge
 - Plant operation
 - Plant maintenance
- PSA techniques knowledge

Thermal-hydraulics, modelling, HR PSA software,

Earliest opportunity before start

Project Plan preparation

- Focus on immediate safety impact
- Systematic control
- Corrective Action when necessary

- Information available at start
 - Scope, Input data, Previous calculations
- In process documentation
 - Assumptions, Source traceability, Changes
- Output documents

- Availability of plant information
 - System to receive or make available plant information
 - Cut date for consistency

- PSA update subject to equivalent QAP
 - Error correction
 - Refinement of assumptions
 - Revision of input data
- Simulations clearly segregated

MANAGEMENT CONFIGURATION MANAGEMENT (1)

- Ensure that models, data, specifications, verification, documentation & software is mutually identified and at known status
- Record changes in configuration status
- Keep team updated on latest changes in PSA information (software, models, tree attributes....)
- Model version control as per procedures

CONFIGURATION MANAGEMENT (2)

IDENTIFICATION of CONFIGURATION

- Project info subjected to status control
- Software and e-info subjected to configuration control
- Keep track on purpose of each version
- Establish a baseline
- Changes incorporated into baseline

QA OF

Verification of compliance with task instructions Verificacion of results acuracy Compliance with requirements for other tasks

INPUTS	PERFORMANCE	TASK OUTPUTS
X	Х	Х
X	Х	Х
X	Х	Х

QA OF TASK

QA OF

- Control of external inputs
 Control of internal inputs
- QA process before released for use or
- Obtained from recognised source & evaluated

All computer codes verified and validated By vendor (commercial codes) Internal QA measures (when internal)

- Verification of system models
 - Verification performed by competent personnel
 - Not involved in original work
 - Planned performance
 - Consideration to intermediate results when appropriate

Different types of review

- Informal (self review)
- Supervisor review
- Independent review
- Specialist review
- External review

- Same controls as original PSA
- Document reason for change
- Typical controls involve:
 - Information control
 - Configuration control
 - Document control
 - V & V , review

According to PSA procedures (see "Procedures for conducting PSA of NPP level 1" 50-P-4)

Self assessment

- Independent assessment
- Aspects to be assessed:
 Completeness
 Consistency
 Accuracy
 Document control
 Configuration control

- IAEA-Safety Series 50-P-4 Procedures for Conducting Probabilistic Safety Assessments of Nuclear Power Plants (Level 1)
- IAEA-TECDOC-1101 Framework for a quality assurance programme for probabilistic safety assessment